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Abstract. In order to study precisely the growth of timed languages,
we associate to such a language a generating function. These functions
(tightly related to volume and entropy of timed languages) satisfy com-
positionality properties and, for deterministic timed regular languages,
can be characterized by integral equations. We provide procedures for
closed-form computation of generating functions for some classes of timed
automata and regular expressions.

1 Introduction

Since the introduction of timed automata in [1], these automata and their lan-
guages are extensively studied both in theoretical perspective and in applications
to verification of real-time systems. However, the natural question of measuring
the size of timed languages was addressed only recently in [3, 2] and a couple of
subsequent works. In these articles we explored the asymptotic behavior of the
volume of a timed language when the number of events tends to ∞. We showed
that for most deterministic timed automata this volume grows (or decreases)
exponentially, defined entropy as its growth rate, characterized this entropy as
a logarithm of the spectral radius of an integral operator Ψ and showed how to
compute the entropy symbolically or numerically.

We believe that size analysis can be useful in several aspects: entropy is a
measure of information content in timed words [3] and a key to a timed code
theory (work in progress). Whenever the entropy is not too small, timed au-
tomata have nice robustness properties [4]. As a practical perspective, we are
exploring applications of size analysis to random generation and compression of
timed words. We also find the study of the size of timed languages a natural and
mathematically appealing generalization of classical results on regular languages
and formal series.

In this article, we make a much more precise size analysis of timed languages
accepted by deterministic timed automata. We associate to such a language
L the sequence of its volumes Vol(Ln), and the generating function f(z) =
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〈a, x ≤ 1, {x}〉

〈b, y ≤ 1, {y}〉

〈a, x ≤ 1, {y}〉〈b, y ≤ 1, {x}〉

p q

〈a, x ≤ 1, {y}〉

〈b, y ≤ 1, {x}〉

〈a, x ≤ 1, {y}〉 〈b, y ≤ 1, {x}〉

p

q

r

〈a, x ≤ 1, {x}〉

〈c, y ≤ 1, ∅〉

〈b, y ≤ 1, {y}〉

Fig. 1. Timed automata. First line: A1, A2; second line: A3, A4.
∑

n Vol(Ln)z
n. Thus the function f(z) contains a complete information on the

“size profile” of Vol(Ln) as a function of n. To relate it to the previous work, we
show that f(z) can be expressed in terms of the resolvent of the operator Ψ , and
that the entropy of a timed language depends only on the convergence radius of
f(z).

Throughout the paper we use examples in Fig. 1, to illustrate the notions of
volume, generating function and techniques for computing the latter. Thus, the
timed language recognized by automaton A1 is

L = {t1, a, t2, b, t3, a, . . . |∀i (ti + ti+1 ≤ 1)}.

For any number of events n we have a polytope in IRn:

Ln = {t1, t2, t3, . . . , tn|∀i (ti + ti+1 ≤ 1)},

the sequence of volumes Vn of these polytopes is

1; 1;
1

2
;
1

3
;
5

24
;
2

15
;
61

720
;
17

315
;
277

8064
. . . ,

and it was shown in [2] that this sequence behaves asymptotically like (2/π)n.
The methods developed in this paper yield a closed-form expression for the
generating function of volumes: tan z + sec z. The convergence radius of the
series, π/2, is the inverse of the growth rate of the sequence Vn. This series
describes precisely the sequence of volumes, and a closed-form formula for Vn

can be deduced:

V2n−1 = B2n(−4)n(1 − 4n)/(2n)! ; V2n = (−1)nE2n/(2n)! ,

where Bs stand for Bernoulli numbers and Es for Euler numbers.
Generating functions behave in a natural way with respect to simple oper-

ations on timed languages (disjoint union, unambiguous concatenation, unam-
biguous star). However in order to obtain an exact characterization and eventu-
ally closed-form expressions for generating function of timed regular languages
a more involved analysis is needed. Such an analysis constitutes the main con-
tribution of the article.
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Related work. Our generating functions generalize those of regular languages,
thoroughly studied and applied, [5, 8, 9]. We are not aware of any work on gen-
erating functions of timed languages. Techniques and ideas used in this article
build on our previous works on volumes and entropy of timed languages, es-
pecially on [2] (however the current article is self-contained). As for automata
and languages under study, we investigate timed regular languages of [1], clock
languages and expressions as in [6], and subclasses of timed automata: regen-
erating automata from [10] , their subclass known as real-time automata [7]
and 1 3

4 -clocks automata, that extend both regenerating automata and 1 1
2 -clocks

automata from [2].
Whenever the alphabet of a timed automaton contains only one letter, its lan-

guage can be seen as a sequence of polytopes Pn ⊆ IRn. Some of such sequences,
known as Fibonacci polytopes, have been studied (independently of timed au-
tomata) in combinatorics (see [11] and references therein). In particular, [11]
provides a full analysis of the sequence of polytopes produced by automaton A1

on Fig. 1. Thus our work points at a connection between timed automata and
enumerative combinatorics.

Article structure. In Sect. 2 we introduce a formalism (inspired by [6]) for timed
and clock languages, introduce volume functions of such languages, and investi-
gate the properties of these functions. In Sect. 3 we introduce generating func-
tions of timed languages and investigate their general properties. In Sect. 4 we
explain how to compute generating functions for several subclasses of timed au-
tomata. We summarize the contributions and discuss the directions of future
work in Sect. 5.

2 Preliminaries

2.1 Clock languages and timed languages

In this paper, we study timed languages (mostly regular) using an approach
based on clock languages introduced in [6]. We present this approach in a slightly
different form along with a multi-stage semantics. The general idea is as follows:
we are interested in timed languages. Timed languages are obtained as projec-
tions of clock languages. Clock languages are homomorphic images of discrete
“triplet languages”. Triplet languages, in turn, can be generated by automata,
regular expressions or grammars. Below we define formally all these notions and
illustrate them on a running example.

An alphabet of timed events is the product IR+ × Σ where Σ is a finite
alphabet. The meaning of a timed event (t, a) is that t is the time delay before
the event a. A timed word is a sequence of timed events and a timed language is
just a set of timed words.

Inspired by [6] we enrich timed words and languages with d-dimensional
clock vectors. A clock is a variable which takes values in IR+. In our setting,
values of clocks will be bounded by a positive integer M . A clock word is a
timed word together with an initial and a final clock vector, i.e. an element of

3
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IRd × (IR+ ×Σ)∗ × IRd. Two clock words [x‖w‖y] and [x′‖w′‖y′] are said to be
compatible if y = x′, in this case we define their product by [x‖w‖y]·[y‖w′‖y′] =
[x‖ww′‖y′]. A clock language is a set of clock words. The product of two clock
languages L and L′ is L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. The
neutral element E is {[x‖ǫ‖x] | x ∈ IRd} and the Kleene star of a language L is
as usual L∗ =

⋃
k L

k with L0 = E .
A clock language L is said to be deterministic whenever for each clock word

the final clock vector is uniquely determined by the initial clock vector and the
timed word, in other words there exists a function σL : IRd × (IR+ ×Σ)∗ → IRd

such that for any clock word [x‖w‖y] of L, we have that y = σL(x,w). In the
following, we work with deterministic clock languages.

To a clock language we associate its timed projections. Given L, we define
L(x,x′) as the timed language leading from x to an element lower than x′:

L(x,x′) = {w | ∃y [x‖w‖y] ∈ L ∧ y ≤ x′}.

We also define the timed language

L(x) = {w | ∃y [x‖w‖y] ∈ L}

as the language starting from x. Note that L(x) = L(x,M ) where M =
(M, . . . ,M) is the greatest clock vector possible.

2.2 Triplet, clock and timed languages

Triplets. Following [6] we define a triplet as a tuple 〈a, g, r〉 with: a a letter
in Σ; g a conjunction of constraints, xi ⊲⊳ c (i ∈ {1, . . . , d}, c ∈ {0, . . . ,M},
⊲⊳∈ {<,>,≤,≥}), called guard, and r ⊆ {1 . . . d} a set of indices of clocks to
be reset. We suppose moreover that guards are such that all the clocks remain
bounded by M. We denote by T the finite alphabet of such triplets.

Clock semantics of triplets. The clock language of a triplet 〈a, g, r〉 is L(〈a, g, r〉) =
{[x‖(t, a)‖x′] | x+t |= g∧r(x+t) = x′}. Here, for a clock vector x = (x1, . . . , xd),
we denote by x+t the vector (x1+t, . . . , xd+t). Clock vectors are updated as fol-
lows: r(y1, . . . , yd) = (y′1, . . . , y

′
d) with y′i = 0 if i ∈ r and y′i = yi otherwise. The

reader acquainted with timed automata will notice that a triplet corresponds to
a transition of such an automaton.

This definition can be extended to all triplet words by: L(ǫ) = E and
L(π1 . . . πn) = L(π1) . . .L(πn). Finally for a language L ⊆ T ∗, we define L(L) =
{L(π) | π ∈ L}. In fact, L is a morphism between the two Kleene algebras
(P(T ∗),∪, ·, ∅, ǫ) and (P(IRd × (IR+ ×Σ)∗ × IRd),∪, ·, ∅, E).

Timed automata and their languages. A timed automaton A is a finite automa-
ton with alphabet T . Its discrete semantics L is the language of triplet words
accepted by A seen as a finite automaton; its clock semantics is LA = L(L) and
its timed semantics is LA(0). The timed automata considered in this article are
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assumed to be deterministic in the sense of [1], i.e. outgoing transitions from the
same state with the same label must have pairwise incompatible guards. Clock
languages of deterministic automata are also deterministic.

A timed regular expression is defined as expression over the finite alphabet
T . Its discrete, clock and timed semantics are defined similarly to the automata.

This multi-stage timed semantics is equivalent to the usual semantics of timed
automata, timed regular expressions, etc.

Example 1 (Our running example). Automata A2 and A3 on Fig. 1 have the
same discrete semantics3 which is captured by a regular expression:

(〈a, x ≤ 1, {y}〉+ 〈b, y ≤ 1, {x}〉)∗.

An example of clock words recognized by the automaton is

[(0.5, 0.8)‖(0.3, a)(0.1, a)(0.9, b)‖(0, 0.9)] .

The timed language recognized is:

{(t1, a) · · · (tn1
, a)(tn1+1, b) · · · (tn2

, b)(tn2+1, a) · · · (tn3
, a) · · · |

∀j ≥ 0,

nj+1∑

i=nj+1

ti ≤ 1},

with n0 = 0 and possibly n1 = 0.

A convenient way to see automata is the matrix form. A timed automaton
A over a set of control states Q and an alphabet of transitions T is uniquely
described by three ingredients:

– a Q×Q-matrix T whose element Tqq′ is the set of triplets labelling transi-
tions from q to q′;

– a row vector I describing initial states: for each control state p, its element
Ip = {ǫ} iff p is initial, and ∅ otherwise;

– a column vector F describing final states: for each control state q, its element
Fq = {ǫ} iff q is final, and ∅ otherwise.

The coefficient (Tn)p,q of Tn contains the language of all the triplet words of
length n from p to q. The pth coordinates of the column vector TnF contains
the language recognized from state p and ITnF contains the language of triplet
words of length n recognized by A. For instance the matrices for A3 are:

I =
(
{ǫ} ∅

)
; T =

(
{〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}
{〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}

)
; F =

(
{ǫ}
{ǫ}

)
.

3 The difference will appear in section 4.1 since A3 is 1 3

4
-clocks and A2 is not.
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2.3 Volume(s) of timed and clock languages

Measurable timed languages and clock languages. A timed language L is mea-
surable if, for any word w ∈ Σ∗, the projection Lw = {t ∈ IR|w| | (t, w) ∈ L}4

is a Lebesgue-measurable subset of IR|w|. A clock language L is measurable if
it is deterministic and for every w ∈ Σ∗, σL(·, (·, w)) is a Lebesgue-measurable

function of IRd × IR|w| → IRd. We remark that timed languages and determinis-
tic clock languages obtained from triplet languages are measurable because their
timed projections are polytopes.

Volumes of a timed language [2]. The sequence of volumes (Vn(L))n∈IN asso-
ciated to a measurable timed language is Vn(L) =

∑
w∈Σn Vol(Lw), where Vol

is the hyper-volume (i.e. Lebesgue measure) in IRn. For dimension 0 we define
V0(L) = 1 if ǫ ∈ L, and V0(L) = 0 otherwise.

Now, for a clock language L and a word w ∈ Σ∗ of length n ≥ 0, we define
the clock language L(w) = {[x‖(t, v)‖x′] | v = w}.

Volumes constrained by initial and final clock vectors. Timed regular languages
considered below come from clock languages (which themselves come from triplet
languages). The information about clock vectors is crucial to compute the volume
of timed languages in a compositional manner.

Thus we define parametric volumes depending on initial and final clock vec-
tors as follows V 2

n (x,x
′) = Vn(L(x,x′)). We call this function the cumulative

volume function (CVF)5 of L. We also allow the following notations: for a clock
language L and a discrete events word w, V 2

L(w)(x,x
′) = V 2

|w|(L(w)(x,x
′)); and

for a triplets word π, V 2
π (x,x

′) = V|π|(L(π)(x,x
′)). The notion of parametric

volumes can be also applied to the clock language constrained only by initial
clock vector L(x): V 1

n (x) = Vn(L(x)). Clearly V 1
n (x) = V 2

n (x,∞) = V 2
n (x,M).

CVFs for a triplet word. According to the following result, a CVF is easy to
compute for a triplet word, and hence for a finite triplet language.

Proposition 1. For a triplet word π the CVF V 2
π is piecewise polynomial with

rational coefficients of degree ≤ |π|. The pieces are polytopes, and an expression
of this function is computable.

Proof. The clock language L(π) is a polytope in IRd×IRn×IRd. Its timed section
L(π)(x,x′) is a polytope in IRn whose coefficients are linear functions of x and
x′. Volumes of such polytopes are computable and have the required form.

Composing CVFs. In order to define a composition for CVF corresponding to
the concatenation of triplet words and languages, we proceed as follows. We
define composition of two functions of IRd × IRd → IR as:

V 2
1 ⋆ V 2

2 (x,x
′) =

∫

y

V 2
2 (y,x

′)V 2
1 (x, dy),

4 by a slight abuse of notation, since (IR×Σ)n is isomorphic to IRn ×Σn

5 similarly to cumulative distribution functions in probability theory.
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where the integral is the Lebesgue-Stieltjes integral6. We also define

V 2
1 ⋆ v(x) =

∫

y

v(y)V 2
1 (x, dy),

when v is defined on IRd. Then we can state the key lemma (to transpose con-
catenation of words to the CVFs world):

Proposition 2. For any measurable clock languages L1 and L2 and discrete
words w1 and w2, V

2
L1(w1)

⋆V 2
L2(w2)

is well defined and satisfies: V 2
L1(w1)

⋆V 2
L2(w2)

=

V 2
L1(w1)·L2(w2)

.

Proof. First recall that

V 2
L1(w1)·L2(w2)

(x,x′) = Vol{t | σL1·L2
(x, (t, w1w2)) ≤ x′}

=

∫

t

dt · 1lσL1·L2
(x,(t,w1w2))≤x′ ,

which gives

V 2
L1(w1)·L2(w2)

(x,x′) =

∫

t1,t2

dt1dt2 · 1lσL2
(σL1

(x,(t1,w1)),(t2,w2))≤x′ .

By Fubini’s theorem this can be rewritten as

V 2
L1(w1)·L2(w2)

(x,x′) =

∫

t1

dt1

(∫

t2

dt21lσL2
(σL1

(x,(t1,w1)),(t2,w2))≤x′

)
.

Applying again the formula for V 2
L2(w2)

, we get that

V 2
L1(w1)·L2(w2)

(x,x′) =

∫

t1

dt1 · V
2
L2(w2)

(σL1
(x, (t1, w1)),x

′)

=

∫

x1

V 2
L2(w2)

(x1,x
′)V 2
L1(w1)

(x, dx1),

as required. The last change of variables can be justified as follows. It has the
form: ∫

t1

dt1 · u(σL1
(x, (t1, w1))) =

∫

x1

u(x1)V
2
L1(w1)

(x, dx1), (1)

and we have to prove that it holds for any measurable u. Indeed, whenever u(y) is
an indicator 1ly≤a, both left-hand and right-hand sides equal V 2

L1(w1)
(x, a), thus

(1) holds. Any other function u can be obtained as a limit of linear combinations
of such indicators.

6 By definition, the Lebesgue-Stieltjes integral
∫
f(x)g(dx) is the Lebesgue integral of

f wrt the measure µ having cumulative distribution function g.
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Volume functions in timed automata. As we did for languages, we introduce a
Q-vector Vn(x) of volumes of clock languages and a Q × Q-matrix V(x,x′) of
cumulative volume functions of elements of the transition matrix T: formally

Vn,q(x) = Vn(Lq(x))

and Vqq′ (x,x
′) = V1(L(Tqq′ )(x,x

′)),

with Lq = L((TnF)q). It follows from the proposition above that the matrix
element (V⋆n)pq (of the matrix power wrt ⋆) contains the CVF of L ((Tn)pq),
that is of the language of all the clock words of length n leading from p to q.
Finally, we get the formula for volumes:

Vn = V⋆n ⋆VF , (2)

with VF a column vector with VF,p = 1 if p is final, and VF,p = 0 otherwise.
The following not so obvious property of volume functions will be used in

the sequel.

Proposition 3. In a timed automaton A, for n ≥ 1, the volume functions
Vn(x) and V⋆n(x,x′) are continuous wrt the initial clock vector x.

Proof. We prove the result for V 2
π for a triplet word π. It is then straightforward

to lift the result to the cumulative and non-cumulative volume functions of the
n-language of an automaton (finite sum of triplet words).

For a triplet word π, L(π)(x,x′) is actually a polytope, intersection of half-
spaces H of equations of one of the following forms:

– either xi + sj ⊲⊳ c,
– xi + s|π| ⊲⊳ x′i,
– sj − sl ⊲⊳ c
– or s|π| − sl ⊲⊳ x′i

Choices of i, j, ⊲⊳ and c depend onH . Here sj is the time since the beginning of the

word after j transitions, i.e. sj =
∑j

i=1 ti, in particular s0 is the constant 0. Note
that the Jacobian of the change of variables t = (t1, . . . , t|π|) to s = (s1, . . . , s|π|)
is 1. So we can write:

V 2
π (x,x

′) =

∫
1lL(π)(x,x′)(t)dt =

∫ ∏

H:half-space

1lH(s,x,x′)ds,

thus, for any i ∈ 1..d:

∂V 2
π (x,x

′)

∂xi
=

∫ ∑

Hl:xi appears

±δ(xi + sji − cl or xi + s|π| − x′i)
∏

H 6=Hl

1lHds

=

∫ ∑

Hl:xi appears

±
∏

H 6=Hl

1lH[xi ← x′
i
−s|π| or xi ← cl−sjl ]

ds̃.
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where s̃ is the vector of coordinates of s different from jl for all l such that
Hl : xi + sjl ⊲⊳kl

ckl
. We note that the Dirac’s δs were all eliminated after

the integration by sjl and that the expression that remains under the integral
is a proper function of x,x′ and s̃. This implies that V 2

π (x,x
′) was actually

continuous with respect to xi for all i and thus continuous.

3 Generating functions

3.1 Definitions

To study volume sequences associated to timed and clock languages we define
their generating functions. As usual for generating functions, they allow recover-
ing the sequence, its growth rate, momenta etc; and they have nice compositional
properties. Given a timed language L its generating function is defined as follows:

fL(z) =
∑

k

zkVk(L).

Given a clock language L, we define a (parametric) generating function with a
given initial clock vector

f1
L(z,x) =

∑

k

zkVk(L(x)) = fL(z), with L = L(x).

For a clock language L we also define another cumulative generating function
with a given initial clock vector and a bound on the final clock vector:

f2(z,x,x′) =
∑

k

zkV 2
k (x,x

′) = fL(z), with L = L(x,x′).

To summarize, we are interested in computing f(z), but this computation will
be based on f1(z,x), and sometimes on f2(z,x,x′).

Given a timed automaton, timed and clock languages, and thus generating
functions are naturally associated to its states, for example

f1
q (z,x) =

∑

k

zkVk(Lq(x)) = fL(z), with L = Lq(x).

Taken for all states, functions fq and f1
q form |Q|-dimensional vector functions

f(z,x), f1(z,x), while functions f2
q,q′ form a Q ×Q-matrix function f2(z,x,x′).

3.2 Analytic characterization

Elementary properties. First, let us state the relations between the three kinds
of generating functions:

Proposition 4. The functions f, f1, f2 are related as follows: f(z) = f1(z,0);
f1(z,x) = f2(z,x,M).

9
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By definition, f2, f1 and f are analytic functions of z. Since we consider timed
automata with guards bounded by some constant M , all the volumes Vk (with
any initial or final conditions) can be upper bounded by (M |Σ|)k. This implies
that convergence radius of series for f2, f1 and f is at least (M |Σ|)−1 > 0. More
precisely, the radius of convergence of f is

1/ lim sup
k→∞

(Vk(L))
1/k = 2−H(L),

where H(L) is called the volumetric entropy of L (see [2]).
For generating functions associated to timed automata, the following result

is a straightforward corollary of Prop. 3:

Proposition 5. Within its convergence radius, the generating function f1(z,x)
associated to a timed automaton A is continuous wrt the initial clock vector x.

Integral equation for generating functions. Consider a timed automaton. Using
formula (2), its generating function can be computed as follows:

f1(z,x) =
∑

k

zkVk(x) =
∑

k

zkV⋆k ⋆VF ,

which implies our first main result.

Theorem 1 (Integral equation). In the interior of its convergence circle, the
generating function f1 is the unique solution of the integral equation

f1 − zV ⋆ f1 = VF . (3)

Example (1, continued). For the automaton A3 (using the notation x −̇ y for
max(x− y, 0)):V =

(
min(x′, 1) −̇x1ly′≥0 min(y′, 1) −̇ y1lx′≥0

min(x′, 1) −̇x1ly′≥0 min(y′, 1) −̇ y1lx′≥0

)
; VF =

(
1
1

)
.

Equation (3) gives:

f1
p (z, x, y) = f1

q (z, x, y) = 1 + z

∫ 1

x

f1
p (z, x

′, 0)dx′ + z

∫ 1

y

f1
q (z, 0, y

′)dy′.

In Section 4.1 below we develop a technique for solving such equations (for a
subclass of automata including this one), and compute the generating function
for this language.

3.3 Volumes, generating functions and functional analysis

In this section (which can be skipped by a reader not interested in functional
analysis), similarly to [2], we rephrase previous results in terms of the spectral
theory of linear operators.

10
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Given a timed automaton, consider the Banach space F of Q-vectors of
continuous functions on clock valuations. Thus an element of F is a vector v
whose components are continuous vq : [0;M ]d → IR, and F = C([0;M ]d)Q. The
matrix V corresponds to an operator Ψ : F → F defined by

Ψ(v) = V ⋆ v

(a variant of this operator plays the central role in [2]). In terms of this operator,
Prop. 3 and equation (2) can be rephrased as follows:

Proposition 6 ([2]). Ψ is a bounded linear operator on F (represented by a
matrix of integral operators). The volume vector can be obtained by iteration of
this operator:

Vn = Ψn(VF ).

Recall that, by definition, the resolvent of an operator A is R(λ,A) =
(A − λI)−1; it is well defined when λ does not belong to the spectrum of A,
in particular for |λ| > ρ(A), where ρ denotes the spectral radius. We obtain as
a consequence of Thm. 1 another characterization of the generating function:

Proposition 7 (Generating function and resolvent). The generating func-
tion f1 satisfies the formula: f1 = −z−1R(z−1, Ψ)VF , which holds in the interior
of the circle |z| < ρ(Ψ)−1.

3.4 Inductive characterization of generating functions

The form of generating functions of finite triplet languages follows from Prop. 1:

Proposition 8. For a finite triplet language L with maximal word length ℓ,
the generating functions f2, f1 are piecewise polynomial in z,x,x′ (pieces are
polytopes in x,x′) of degree ≤ ℓ wrt z and wrt x and x′.

More complex languages can be obtained from finite ones using Kleene alge-
bra operations. As usual in the context of generating functions, we suppose that
the operations are unambiguous. A language operation is ambiguous if a word
of the resulting language can be obtained in several ways by composing different
words from the operands. We consider first the simple case of timed languages.

Proposition 9. Generating functions behave well for unambiguous operations
on measurable timed languages:

– fL1∪L2
= fL1

+ fL2
;

– fL1·L2
= fL1

fL2
;

– fL∗ = 1 + fLfL∗ provided ǫ 6∈ L.

However, in order to obtain general timed regular languages we need opera-
tions on clock languages, which are more involved.

Proposition 10. Generating functions f2 behave well for unambiguous opera-
tions on deterministic measurable clock languages:

11
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– f2
L1∪L2

= f2
L1

+ f2
L2
;

– f2
L1·L2

= f2
L1

⋆ f2
L2
;

– f2
L∗ = 1lx≤x′ + f2

L ⋆ f
2
L∗ provided E ∩ L = ∅.

Proof. – Union:

f2
L1∪L2

(x,x′, z) =
∑

w∈Σ∗

z|w|V 2
L1∪L2(w)(x,x

′)

Since the union is unambiguous, ∀w ∈ Σ∗, L1(w) ∩ L2(w) = ∅ and thus
∀w ∈ Σ∗, V 2

L1∪L2(w) = V 2
L1(w) + V 2

L2(w). Finally :

f2
L1∪L2

(x,x′, z) = f2
L1
(x,x′, z) + f2

L2
(x,x′, z)

– Product:
Recall that:

f2
L1·L2

(x,x′, z) =
∑

w∈Σ∗

z|w|V 2
L1·L2(w)(x,x

′).

Since the product is unambiguous,

(L1 · L2)(w) =
⊎

w1,w2∈Σ
∗

w=w1w2

L1(w1) · L2(w2),

and thus

V 2
L1·L2(w) =

∑

w1,w2∈Σ
∗

w=w1w2

V 2
L1(w1)·L2(w2)

=
∑

w1,w2∈Σ
∗

w=w1w2

V 2
L1(w1)

⋆ V 2
L2(w2)

,

with the last equality given by proposition 2. We deduce:
∑

w∈Σ∗

z|w|V 2
L1·L2(w) =

∑

w∈Σ∗

∑

w1,w2∈Σ
∗

w=w1w2

z|w1|V 2
L1(w1)

⋆ z|w2|V 2
L2(w2)

=
∑

w1∈Σ∗

∑

w2∈Σ∗

z|w1|V 2
L1(w1)

⋆ z|w2|V 2
L2(w2)

=
∑

w1∈Σ∗

z|w1|V 2
L1(w1)

⋆
∑

w2∈Σ∗

z|w2|V 2
L2(w2)

,

and finally:
f2
L1·L2

= f2
L1

⋆ f2
L2
.

– Kleene star:
We have L∗ = E ∪L·L∗, the union is empty since E ∩L = ∅ and the product
is unambiguous since the star is unambiguous thus using the two first items:

f2
L∗ = f2

E + f2
L ⋆ f

2
L∗ .

To complete the proof it remains to prove that f2
E(x, x

′, z) = 1lx≤x′ . Recall

that: E = {[x‖ǫ‖x] | x ∈ IRd} thus E(x, x′) = {w ∈ (R+ × Σ)∗ | ∃y ≤
x′, (x,w,y) ∈ E} = {w ∈ (R+ × Σ)∗ | x ≤ x′,w = ǫ} this set is equal to
the 0-dimensional set {ǫ} whose volume is 1 iff x ≤ x′, otherwise it is empty
and thus of volume 0.

12
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p q

r

〈b, x < 7, {x}〉

〈a, 2 < x < 3, ∅〉 〈b, x < 5, {x}〉

〈b, x < 8, {x}〉
p q

r

b, [1; 9]

a, [2; 3] a, [1; 5]

b, [2; 8]

Fig. 2. A regenerating automaton (left) and a real-time automaton (right)

Corollary 1. Generating function f1 for unambiguous compositions of clock
languages can be computed as follows:

– f1
L1+L2

= f1
L1

+ f1
L2
;

– f1
L1·L2

= f2
L1

⋆ f1
L2
;

– f1
L∗ = 1 + f2

L ⋆ f1
L∗ provided E ∩ L = ∅.

4 Computing generating functions

The generating function of a timed language represented by an automaton is
characterized by a system of integral equations (3). The generating function of
a timed language represented by a regular expression can be found recursively
from piecewise polynomial functions using operations +, ⋆ and solving fixpoint
integral equations of Prop. 10 and Cor. 1. Unfortunately, both procedures involve
computation of integrals, and solution of integral equations, for this reason, the
result cannot be always presented by an explicit formula. Below we consider
several subclasses of timed automata, for which generating functions can be
obtained in closed form, or at least admit a simpler characterization.

4.1 Generating functions for particular classes of automata

System of equations. Our closed-form solutions for subclasses of timed automata
will be obtained using a variant of language equations.

Let Q = G ∪ B be a disjoint partition of the states of a timed automaton
A into good and bad. We want to describe the vector L of triplet languages Lq

recognized from good states q ∈ G only. This vector satisfies the equation:

L = T · L+ F, (4)

where T is a G × G-matrix and F is a G-vector of triplet languages. Their
elements are defined as follows: T pq consists of all words leading from p to q via
bad states only; F p consists of all words leading from p to a final state via bad
states only7.

7 if this final state is good the word should be ǫ.
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Automata with regeneration. Following [10], we call an automaton regenerating
if there exists a partition Q = G ∪B having two properties:

(a) every cycle in the automaton contains a state in G (good);
(b) all the transitions coming into a good state reset all clocks.

W.l.o.g. we suppose that the initial state is good (this can be achieved by adding
a new initial state). Condition (a) implies that no cycle is possible within bad
states, and thus all the elements of T and F are finite triplet languages (with
maximal word length ≤ |B|+1). Condition (b) means that (4) can be rewritten
in timed languages (instead of clock languages), since when entering in a good
state all clocks are reset. This gives

Ltimed = Ttimed · Ltimed + Ftimed. (5)

Applying simple compositionality conditions for generating functions for timed
languages (Prop. 9) we obtain that

f = f f + fF .

Due to Prop. 8 all the coefficients (elements of matrix f and vector fF ) are
polynomials of z. Solving this linear |G|-dimensional system we express f as a
vector of rational functions of z:

f =
(
I − f)−1 fF . (6)

The generating function f of the timed language accepted by the automaton is
just one element of this vector f . We conclude.

Theorem 2. For a regenerating automaton the generating function f(z) is a
rational function.

Example 2. Consider a regenerating automaton on Fig. 2 (left). We choose good
and bad states as follows: G = {p, q};B = {r}. The system of equations on
timed languages of good states takes the form

(
Lp

Lq

)
=

(
∅ Tpq

Tqp ∅

)
·

(
Lp

Lq

)
+

(
Fp

∅

)
with (7)

Tpq ={(t1, a)(t2, b)|2 < t1 < 3 ∧ t1 + t2 < 5} ∪ {(t, b)|t < 8};

Tqp ={(t, b)|t < 7};

Fp ={(t, a)|2 < t < 3}.

For generating functions this yields:
(
fp
fq

)
=

(
0 2.5z2 + 8z
7z 0

)
·

(
fp
fq

)
+

(
z
0

)
.

Solving this linear system we find the required

fp(z) =
2z

2− 35z3 − 112z2
.
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It converges for |z| < 0.1309, its Taylor coefficients (i.e. volumes Vn for n = 0..11)
are

0; 1; 0; 56; 17
1

2
; 3136; 1960; 175922

1

4
; 164640; 9885946; 12298479

3

8
; 556494176.

Real-time automata. We consider here transition-labeled real-time automata (t-

RTA) from [7]. They are automata, in which to any transition p
a
→ q is associated

a time interval [l, u]. This transition can be taken after spending between l and
u time units in p. Equivalently, a real-time automaton can be seen as a timed
automaton with only one clock, which is reset on any transition.

It is easy to see that real-time automata are regenerating (all their states are
good). Thus equation (6) applies. Its coefficients can be found in a more explicit
form:

f = (I − zA)−1VF , (8)

where matrix Apq is the sum of lengths of all time intervals associated to tran-
sitions from p to q, and, as before, VFq = 1 iff q is final, and 0 otherwise. This
can be seen as a simplified version of the resolvent equation (3) for real-time
automata: instead of a matrix of integral operators, a matrix of polynomials is
inverted.

Example 3. For the real-time automaton on the right of Fig. 2 equation (8) takes
the form: 


fp
fq
fr


 =


I − z




0 6 1
8 0 0
0 4 0





−1

·




0
0
1


 ,

which gives the required generating function:

fp =
z

1− 48z2 − 32z3

with convergence circle |z| < 0.13812 and first 11 Taylor coefficients (volumes
Vn):

0; 1; 0; 48; 32; 2304; 3072; 111616; 221184; 5455872; 14188544; 268959744.

1 3
4 -clocks automata. We call an automaton 1 3

4 -clocks if there exists a partition
of Q = G ∪B into good and bad states having three properties:

– every cycle in the automaton contains a good state;
– the initial state is a good one;
– for each good state p there is at most one clock xi(p) not reset by incoming

transitions.

Similarly to regenerating automata, we apply equations (4), and observe that
all the coefficients are finite triplet languages. Unfortunately, since some clocks
are not reset, we cannot write an equation on timed languages similar to (5).
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Instead, we pass to clock languages and their generating functions, as in the
general case. This gives:

f1 = f2 ⋆ f1 + f1F , (9)

an integral equation with piecewise polynomial coefficients. We notice that func-
tions in the last equation depend on the clock vector x ∈ IRd (or on two clock
vectors x,x′), but in fact for any good state p ∈ G only one clock xi(p) mat-
ters. This allows extracting simpler integral equations from (9), involving only
functions of scalar argument.

We proceed as follows: given a G-vector v whose elements vp are functions

on IRd, we define reduced functions on IR:

ṽp(x) = vp(0, . . . , 0, x, 0, . . . , 0),

with the argument x at position i(p). Reduced G-vector ṽ consists of reduced
elements ṽp. Reduced version of matrices are defined similarly.

The following identity is based on the requirement of clock resets:

Lemma 1. For a 1 3
4 -clocks automaton the following holds: ˜f2 ⋆ f1 = f̃2 ⋆ f̃1.

Equation (9), reduced to

f̃1 = f̃2 ⋆ f̃1 + f̃1F ,

implies that the reduced vector of generating functions is a solution of equations
of the form:

f(z, x) = (A ⋆ f)(z, x) + b(z, x), (10)

where all the coefficients are piecewise polynomial functions of z and a scalar
argument x.

Lemma 2. An integral equation of the form (10) can be transformed into a sys-
tem of linear ordinary differential equation with piecewise polynomial coefficients
(depending on x and z).

Theorem 3. For a 1 3
4 -clocks automaton the generating function f can be ob-

tained by solving a system of linear ordinary differential equations with piecewise
polynomial coefficients.

We notice that the theorem gives a rather explicit characterization of f , but not
always a closed-form expression.

Example (1, completed). A3 is 1 3
4 -clocks

8 with good states G = {p, q} and no
bad state B = ∅. The matrix A and the vector b areA =

(
z(min(x′, 1) −̇x) zmin(x′, 1)

zmin(x′, 1) z(min(x′, 1) −̇x)

)
; b =

(
1
1

)
.

8 A3 can be seen as A2 whose state is split to make it a 1 3

4
-clock automaton.
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We use equation (10) and remark that by symmetry of A, the two generating

functions f̃1
p and f̃1

q are equal to a unique function f1 which satisfies

f1(z, x) = z

∫ 1

x

f1(z, x′) dx′ + z

∫ 1

0

f1(z, x′) dx′ + 1.

Differentiating it one time w.r.t x we obtain: ∂f1

∂x (z, x) = −zf1(z, x). The solu-
tion has the form f1(z, x) = A(z)e−zx. We remark that

f1(z, 0)− 1 = 2z

∫ 1

0

f1(z, x′) dx′ = 2(f1(z, 1)− 1)

ande are done since

f(z) = f1(z, 0) = A(z) = 1
/(

2e−z − 1
)
.

Example 4. Automata A1 and A4 are also 1 3
4 -clocks, and their generating func-

tions are

tan z + sec z and
4

π
(
Bi′(0)Ai(−z)−Ai′(0)Bi(−z)

) ,

where Ai and Bi stand for Airy functions (see Appendix for detailed computa-
tions).

5 Conclusions

In this article, we have introduced generating functions of timed languages, ex-
plored their properties and characterized them by integral equations. For sub-
classes of timed regular languages we have presented closed-form expressions or
simpler characterization of generating functions. Generating functions describe
with a high precision the quantitative behaviour of timed languages.

At the current stage of research, the computation of generating functions is a
semi-manual task and restrictions are imposed to the automata. We are planning
to explore theoretical and practical algorithmics of timed generating functions,
and to implement the algorithm. On the other hand, we want to see whether
closed form solutions are possible beyond the class of 1 3

4 -clocks languages.
We hope that this approach will lead to new combinatorial results for timed

regular languages and sequences of polytopes, better quantitative characteriza-
tion of such languages with applications to information theory and verification
of real-time systems. Also, the approach can be extended to timed formal series,
non-regular timed languages, or to richer models such as hybrid automata.
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A Some details for the examples

A.1 Example A1

The matrices defining A1 are:

I =
(
{ǫ} ∅

)
; T =

(
∅ {〈a, x ≤ 1, {x}〉}

{〈b, y ≤ 1, {y}〉} ∅

)
; F =

(
{ǫ}
{ǫ}

)
.

The matrices of CVF are:V =

(
0 min(1 −̇x, y′ −̇ y)1lx′≥0

min(1 −̇ y, x′ −̇x)1ly′≥0 0

)
; VF =

(
1
1

)
.

The automaton A1 is 1 3
4 -clocks, it suffices to choose G = {p, q}, B = ∅. The

matrix A and the vector b areA =

(
0 zmin(1 −̇x, x′)1lx′≥0

zmin(1 −̇x, x′)1lx′≥0 0

)
; b =

(
1
1

)
.

Equations (10) on generating functions take the form:

f̃1
p (z, x) = z

∫ 1−x

x′=0

f̃1
q (z, x

′) dx′ + 1; f̃1
q (z, x) = z

∫ 1−x

x′=0

f̃1
p (z, x

′) dx′ + 1.

By symmetry the two generating functions f̃1
p and f̃1

q are equal to a unique
function f1 which satisfies

f1(z, x) = z

∫ 1−x

x′=0

f1(z, x′) dx′ + 1.

Differentiating it twice w.r.t x we obtain:

∂f1

∂x
(z, x) = −zf1(z, 1− x);

∂2f1

∂x2
(z, x) = −z2f1(z, x).

The solution has the form f1(z, x) = A(z) cos zx+B(z) sin zx. Using ∂f1

∂x (z, 0) =
−zf1(z, 1) = −z we obtain zB(z) = −z and thus B(z) = −1. Then f1(z, 1) = 1
implies A(z) cos z − sin z = 1 and thus A(z) = 1+sin z

cos z = tan z + sec z. We are
done since f(z) = f1(z, 0) = A(z) = tan z + sec z.

A.2 Example A2

The matrices of A2 are 1× 1-dimensional since it has only one state:

I = ({ǫ}) ; T = ({〈a, x ≤ 1, {y}〉, 〈b, y ≤ 1, {x}〉}) ; F = ({ǫ}) .

The matrices of CVF are:V = (min(x′, 1) −̇x1ly′≥0 +min(y′, 1) −̇ y1lx′≥0) ; VF = (1) .
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The equation on generating function is

f1(z, x, y) = 1 + z

∫ 1

x

f1(z, x′, 0)dx′ + z

∫ 1

y

f1(z, 0, y′)dy′.

This automaton is not 1 3
4 -clocks, but language equivalent to its split form A3

treated in the article.

A.3 Example A4

The automaton A4 is 1 3
4 -clocks, it suffices to choose G = {p, q}, B = {r}. As

in the previous example we have Apq(x, x
′) = min(1 −̇x, x′)1lx′≥0. For Aqp, we

must compute the volume of the language Lcb(x2, x
′
1) = Lcb(x, x

′) = {t1, t2 ≥
0 | x+ t1 + t2 ≤ 1 ∧ t1 + t2 ≤ x′}. This is the area of the right triangle defined

by equations t1, t2 ≥ 0, t1 + t2 ≤ u, where u = min(1 −̇x, x′), i.e. min(1 −̇x,x′)2

2 .
We can now give the matrix A and the vector b:A =

(
0 zmin(1 −̇x, x′)1lx′≥0

z2min(1 −̇x,x′)2

2 1lx′≥0 0

)
; b =

(
1
0

)
.

Equations (10) on generating functions take the form:

f̃1
p (z, x) = z

∫ 1−x

0

f̃1
q (z, x

′) dx′; f̃1
q (z, x) = z2

∫ 1−x

0

x′f̃1
p (z, x

′) dx′ + 1.

Differentiating w.r.t x we obtain:

∂f̃1
p

∂x
(z, x) = −zf̃1

q (z, 1− x);
∂f̃1

q

∂x
(z, x) = −z2(1− x)f̃1

p (z, 1− x).

Differentiate once again the former equation gives:
∂2f̃1

p

∂x2 (z, x) = z
∂f̃1

q

∂x (z, 1 − x),
combining with the latter one this gives:

∂2f1

∂x2
(z, x) = −z3xf1(z, x) with f1 = f̃1

p .

The solution has the form f1(z, x) = α(z)Ai(−zx) + β(z)Bi(−zx) where Ai
and Bi are the Airy’s functions and α(z), β(z) two functions to be determined

with the border conditions f1(z, 1) = 1, ∂f1

∂x (z, 0) = 0. We obtain the following
equations:

α(z)Ai(−z) + β(z)Bi(−z) = 1; α(z)Ai′(0) + β(z)Bi′(0) = 0.

Solving this system and simplifying using classical formulae for Ai(0), Ai′(0),
Bi(0), Bi′(0) and Euler’s reflection formula, we obtain the final result:

f(z) = f1(z, 0) =
4

π
·

1

Bi′(0)Ai(−z)−Ai′(0)Bi(−z)
.
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